Today we are going to start a new series of lessons that will allow you to take your Arduino projects up to the next level. Hopefully you have been through my 20 lessons on using the Arduino. If you are not familiar with the Arduino, you should start with those lessons. If you are familiar with Arduino, you can just right into this series of Lessons.
One of the major limitations of the Arduino IDE is its limited ability to interact with the user. You can print text to a simple serial monitor text box, or get text input from the user. You can open up a new world of possibilities by using the programming language python to interact with the Arduino. Python combined with Arduino is a powerful combination what will drastically increase the WOW factor of your projects.
The video above will show a cool project that will hopefully motivate you to undertake this series of lessons. Python is a really cool language, and now that you know Arduino, it will be a breeze to learn Python!
OK, we are ready to move forward and learn new circuit skills and new programming skills. In today’s lesson we will learn how to control an RGB (Red, Green, Blue) LED with an arduino microcontroller! This will introduce us to a new circuit component, and will require us to learn some new programming skills.
An RGB LED is basically three LED’s in one. It has 4 leads. One lead, the long lead, is the common ground. Then one lead controls the red LED, one lead controls the green LED, and one lead controls the blue LED. All three of the LED’s are connected to ground through the same pin. You can control the color you get out of the LED based on the voltages you write to the different control pins. A schematic will probably help you understand how the component works and how you should hook up to it.
This picture shows the four pins for a common cathode RGB LED. “Common Cathode” just means that the LED’s share the ground pin. There are also “Common Anode” LED’s which share a common high voltage pin, and then each color has its own ground. I think these are much more confusing, but just mention them so that you know that this tutorial is for the common cathode type. The Sparkfun Inventor Kit has the common cathode configuration, which is the type I prefer. Also note in the drawing you can see that the length of the pins is your clue as to which pin controls red, which green and which blue.
Now lets think about using this in a circuit. As you can see in the schematic, all three of the LED’s share a common ground pin. You can easily see that pin should be connected to your circuit ground. Now, think about how you would connect the control pins. To control a normal LED, you needed to connect to one arduino output pin. To control this LED, how many control pins will you need to use on the arduino? That’s right . . . you will need three control pins. Also, remember than you never connect an LED directly to a voltage source, you always use a series current limiting resistor (typically 330 ohms). For these new RGB LED’s how many current limiting resistors will we need? We will need three . . . each color control pin will need its own current limiting resistor. So each color control pin will connect to an arduino output pin through its own current limiting resistor. Once that is hooked up, we can control what color the LED is by writing voltages from the arduino to specific legs of the RGB LED. If we write a voltage to the red pin, the LED will be red. If we write a voltage to the blue pin, the LED will be blue. Also the exciting thing is that if you write voltages to multiple pins, you can get the in between blended colors. Basically by analogWrite-ing different values to the 3 different control pins, you can get any imaginable color. But first, lets go ahead and get our circuit set up. The following schematic controls red from arduino pin 6, green from arduino pin 10 and blue from arduino pin 11. Go ahead and hook this circuit up.
Now lets play around with a program that will independently turn on the different colors. We will start simple so we can get an intuitive feel for how the LED works.
Arduino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
intredPin=11;//set red LED pin to 11
intgreenPin=10;//set green LED pin to 10
intbluePin=6;//set blue LED pin to 6
intbrightness=100;//Set brightness to 100
voidsetup(){
// put your setup code here, to run once:
Serial.begin(9600);//Turn on Serial port
pinMode(redPin,OUTPUT);//Set redPin to be an output
pinMode(greenPin,OUTPUT);//Set greenPin to be an output
pinMode(bluePin,OUTPUT);//set bluePin to be an output
}
voidloop(){
// put your main code here, to run repeatedly:
analogWrite(redPin,0);//turn off red pin
analogWrite(greenPin,0);//turn off green pin
analogWrite(bluePin,brightness);//write 100 (brightness) to blue pin
}
With the code above, what color do you anticipate the LED will be? Hook up the circuit and type in the code, and see what happens. It is important that you type in the code. Do not cut and paste my code. You need to type it in. When you type it in, you will probably make mistakes and when you do you will have to troubleshoot or debug your code. That means you have to find your mistakes. All programmers make mistakes, and it is important very early on to learn how to find your mistakes.
Modify the code above so that the LED turns green.
Now modify it again so that the LED turns red.
Now try for the in between colors. How would you get the LED to turn orange? Play around with achieving different colors. Try to get the following colors:
I want to whet your appetite a little today about the types of projects we will be covering in this blog. One of the things I love to do is send instrument packages to the edge of space. As this blog develops, I hope to be able to share with you lots of the technology, logistics and rules associated with this fascinating endeavor. For now, let me share a video from our last flight. Enjoy the serenity as our probe hovers at 120,000 feet. At this altitude, you can see the blackness of space and the curvature of the earth. The thin blue line is the earth’s atmosphere. Enjoy!
Making The World a Better Place One High Tech Project at a Time. Enjoy!