Category Archives: Arduino

9-Axis IMU LESSON 22: How to Create a Tilt Stabilized Platform with Arduino

In this Lesson we begin to work on developing a tilt stabilized platform using the BNO055 9-axis sensor, and we will take advantage of all the learning that happened in the first 22 lessons. Now though, we will be moving out of the virtual world of Vpython, and will begin working in the real world. In this lesson we focus on getting the gear together. You can go ahead and order your gear, and then next week we will begin assembling and coding. In addition to the arduino nano, and the BNO055, you will need:

You Will Need Two of These HiTEC Servos

NOTE: I am no longer recommending the MG995 four pack of servos, as I have recently gotten several bad batches, so have moved to the HiTEC linked above.

A set of Pan Tilt Brackets:

 PC Board Power Supply (If you have the ELEGOO Kit, you already have this)

Good Wall Wart Power Plug for the Power Supply (if you dont have one)

Bundle of Extra Cables

OK, get your gear ordered and we will start putting things together next week.

Arduino Tutorial 43: Binary Counter with 74HC595 Serial to Parallel Shift Register

In lesson 42 we showed you how to connect and program the 74HC595 shift register. We showed how data in byte format would then be written to an array of 8 LED to give a visual representation of the binary version of that byte variable. We then gave you the assignment to create a Binary Counter using the 4HC595. In this lesson we show you the solution. This builds on Lesson 42, so make sure to have your basic 74HC595 circuit set up before starting this lesson.

 An official Arduino Uno R3 is available HERE. In this new series of lessons, I will be using the sensor and other components found in this KIT.

The code we ended up developing in this lesson is provided below.

 

 

9-Axis IMU LESSON 21: Visualizing 3D Rotations in Vpython using Quaternions

In this lesson we show how to use quaternions from the BNO055 to create a visualization in Vpython. The visualization is a complete 3D free body rotation of a rigid body. To build this project you will need an Arduino Nano, and an Adafruit BNO055 Inertial Measurement Sensor.

This is the code we developed in the video posted here for your convenience. This code is for demo purposes only and should not be used in real applications. It is for educational purposes only.

This is the code we developed on the python side to do the visualization from the passed quaternions.

 

 

 

Arduino Tutorial 42: Understanding How to Use a Serial to Parallel Shift Register (74HC595)

74HC595
In this Circuit the 74HC595 is independently controlling 8 different LEDs.

In this lesson we show you how to expand the number of LEDs or other devices you can control with the Arduino by incorporating a Serial to Parallel converter. The chip we will be using is the 74HCH595. When connected to just a few pins of the Arduino, data can be sent serially to the chip, and then LEDs can be connected to the output pins of that chip. Hence, you can control 8 LEDs using only 3 digital pins on the Arduino.

This is somewhat of a tedious project, because the circuit has lots of wires, and it must be connected perfectly. We use the following schematic in this project:

74HC595
This is the schematic we use in this example to control 8 LEDs from the 74HC595 chip.

The video takes you step by step through the entire build and programming.

The code we used in this build is included below:

An official Arduino Uno R3 is available HERE. In this new series of lessons, I will be using the sensor and other components found in this KIT.

9-Axis IMU LESSON 20: Vpython Visualization of Roll, Pitch, and Yaw


This is the arduino code we developed in this lesson to approximate roll, pitch and yaw over small ranges.

This is the python code we developed to visualize the 3 dimensional rotation of a rigid body.